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Abstract

The problem of the boundary kinematic control of one-dimensional oscillatory systems with distributed parameters in a finite
time interval is investigated. The displacement of one of the ends is assumed to be controlled; the other end is assumed to be
free. The system is subjected to additional disturbing actions, distributed and concentrated at the ends. The problem is stated by
selecting an admissible control to transfer the system from an arbitrary state to the required final state, provided that the integral
quadratic functional is minimal. Using the Fourier method, the maximum principle method and the L-problem of moments method,
the problem of optimal control is solved explicitly in closed form, and, by d’Alembert’s wave propagation method, is represented
in terms of the initial functions. The requirements concerning the disturbing actions are established, and also those concerning
the initial and final distributions and the duration of the control process, leading to smooth solutions of the problem. The problem
of synthesizing the optimal control is discussed. The results are of interest when investigating problems of precision control of
mechanical systems possessing considerable elastic compliance (shafts, beams, springs, strings, etc.)
© 2007 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Consider a one-dimensional oscillatory system, with distributed parameters, describing the motions of elastic
mechanical systems such as shafts, beams, distributed springs, strings, etc.1,2 It is assumed that control and dis-
turbing actions, both dynamic (forces or moments of forces) and kinematic (displacements, velocities or accelerations)
(see Refs 3–9, etc.), can be applied to points (cross-sections).

The solution of problems of control and optimization in a finite time interval by actions concentrated at boundary
points is of considerable theoretical and practical interest. For this purpose, methods of functional analysis, optimal
control theory and the L-problem of moments are used, as well as approximate analytical and numerical methods.1,2,10–14

Using these methods, solutions of specific problems have been obtained in fairly complete form.3–5,7–9 They indicate the
qualitative differences in controlled systems with distributed and lumped parameters, related to the finite propagation
velocity of the control actions. In the general case of the initial distributions of displacements and velocities of points
of the system, this property imposes a lower limit on the length of the time interval in which the control is being
carried out. The properties of the controlled oscillators are considerably influenced by the different types of boundary
conditions and control actions, and also the different types of initial and final distribution of the displacements and
velocities.
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We will investigate the case of a “rigid” kinematic control concentrated at the left-hand end (x = 0) of the system.
To fix our ideas, we will consider the governing equation and boundary conditions of the form

(1.1)

(1.2)

where u = u(t,x) is the angular or linear displacement of points of the system, � is the linear inertial characteristic, σ is
the torsional stiffness (shafts) or the stiffness with respect to elastic displacement (beams or springs) or cross-sectional
stiffness (taut threads or strings), l is the length and T is the time at which the control process ends. The functions U, A
and M are considered to be specified and fairly smooth. The quantity a is the control (the rotation or displacement of
the left-hand end) and is selected depending on the task in hand, namely to transfer the system from the known initial
state at t = 0 to the required final state at t = T

(1.3)

(1.4)

Here, the integral quadratic functional of the quality taken as the performance index of the controlled motion should
reach a minimum:

(1.5)

Note that the values of the functions f0,T and g0,T and their derivatives at x = 0, l should be consistent with the known
values of A and M at t = 0, T (see below). A similar problem was solved in Ref. 8 for u̇(t, 0) = a, in Ref. 7 for the case
of force control u′(t, 0) = −a, while in Ref. 9 a control concentrated at the ends and continuously distributed at points
of the system was investigated.

An investigation of the initial problem of control and optimization using relations (1.1) to (1.5) is extremely tedious.
It can be simplified considerably by using solution z(t,x) of the “initial–boundary–value” problem

(1.6)

Note that here the “initial” data are taken at t = T, and the solution z is considered for t < T. It can be constructed
in the form of a Fourier series using the standard procedure of the method of separation of variables (see below). It is
assumed that the functions U, A, M, fT and gT belong to the class of fairly smooth (according to Steklov) functions.10,11

This requirement is governed by the properties of smoothness of the solution (classical, strong or weak3,6,11). The
classical and, in part, strong solutions are of practical interest.

Suppose the classical solution of problem (1.6) is constructed in the form of a set of Fourier series, defined by
the functions indicated. Each series can be “contracted” by d’Alembert’s wave propagation method into a finite
expression,5,7–9 which is of fundamental importance for applications. Then, using the charge of variables u = z + v

and proceeding to dimensionless quantities, the initial problem of optimal control equations, (1.1)–(1.5), can be reduced,
for the unknowns a(t) and v(t, x), to the following form

(1.7)

We take as the unit of length and time, l and l(�/�)1/2, respectively.
According to relations (1.7), a distributed system is considered, the right-hand end (x = 1) of which is free, while

the left-hand end (x = 0) is subjected to a “rigid” control of the kinematic type. It is required to transfer the system as
a whole optimally into a state of rest; when a ≡ 0 for t ≥ T it will remain in this state. Note that the initial data f(x) and
g(x) for v and v̇ respectively are determined using the known functions f0 and g0 and the constructed solutions z and
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ż at t = 0 (see system (1.7)). They are assumed to be fairly smooth in the sense defined below when constructing the
optimal motion of the system.

2. The use of the method of separation of variables and of the maximum principle

We will construct the required solution of the initial-boundary-value problem (1.7) with some fixed control a(t)
using the standard procedure of separation of variables: v(t, x) ∼ θ(t)X(x). The coordinate function X and the constant
of separation �2 are defined simply as the solution of the problem for eigenvalues and functions of the form

(2.1)

The system of functions Xn is orthogonal and complete. On its basis, the function v(t, x) is constructed in the form
of a Fourier series1,2,14

(2.2)

Expression (2.2) becomes identically zero at x = 0, i.e. a singularity occurs that disappears for x > 0 (x = +0).
This property follows from subsequent constructions as a result of determining the unknown Fourier coefficients
�n(t).

We will use Grinberg’s method10 is calculate the unknowns �n without reduction to the form of the problem
with homogeneous boundary conditions. We differentiate expression (2.2) twice with respect to t and substitute
Eqs. (1.7) into the left-hand side; the right-hand side remains unchanged. We now multiply both sides of the
relation by sin �nx and integrate with respect to x in the interval 0 ≤ x ≤ 1. This enables us to obtain a denumer-
able system of inhomogeneous differential equations for �n; the initial data are found in the standard way.8 As a
result, a non-trivial denumerable-dimensional problem of optimal control is obtained, containing a scalar control
function a,

(2.3)

Provided that the function a(t) is known, solutions of the Cauchy problem (2.3) are easily found and have the form

(2.4)
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After substituting of expressions (2.4) into series (2.2) and some trigonometric transformations, the required function
v(t, x) can be represented, using d’Alembert’s (“leftward” and “rightward”) wave propagation method, by the expression

(2.5)

The functions F, G and � are periodic, with a period of 4, which follows from the property of 4-periodicity of the
functions sn(y) and cn(y). Here, F and G are odd functions, and � is an even function (with respect to zero).

The correctness of expressions (2.2)–(2.4) can be confirmed by a change of variable leading to a zero boundary
condition at x = 0. In fact, suppose ä is integrable and ȧ is continuous. Then, by means of the obvious change of variable
v → w

(2.6)

for the unknown w, an initial–boundary–value problem is obtained that contains an inhomogeneity in the governing
equation:

(2.7)

In expressions (2.6) and (2.7), the function h(x) is twice continuously differentiable, and is arbitrary in all other
respects; in particular, h = (1 − x)2.

The use of the procedure of separation of variables leads to expression of the function w(t, x) in the form of a
Fourier series similar to (2.2). The inhomogeneity in Eq. (2.7) and the initial data are exposed in terms of a complete
orthogonal system of functions Xn (2.1). The corresponding expressions for the Fourier coefficients (of the type �n

and θ̇n (2.4)), after integration by parts and substitution into the series, yield identical representations for the required
function v(t, x).

Note that the function �(y) is a distribution generalized (when function); y = 0, ±2, ±4, . . . series (2.5) diverges; it
has the meaning of a periodic Dirac �-function, taking into account the effect of the control action a(t).14

The structure of the optimal control is defined using the maximum principle.12 Formally, the denumerable-
dimensional vectors �n and �n, adjoint to �n and θ̇n = νn, respectively, are introduced, and the necessary conditions
of optimality are written down:

(2.8)
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The equations for �n are integrated simply; as a result, the required representation of the optimum control a* (2.8)
as a 4-periodic function of time t, odd with respect to t = ±2, is obtained; we have

(2.9)

The constants 	n and 
n are to be determined; after substituting expression (2.9) into formulae (2.4), and taking
into account the final conditions (when t = T) for �n and θ̇n, a denumerable-dimensional linear system is obtained. Its
effective solution for arbitrary T < ∞ and functions f and g from a certain class of smoothness encounters considerable
difficulty and is the main content of the investigation conducted below.

3. Construction of the optimal control

We substitute the expression a*(t) (2.9) into the denumerable system (2.4), taken at t = T, and equate the functions
�n(T) and θ̇n(T ) to zero according to the final conditions (2.3). Solving it, we represent the equations defining a*(t) in
the equivalent form of moment relations13,14

(3.1)

Note that the integrands are 2-periodic owing to the properties, established by relations (2.9), of the expression
a*(t). Below, the system of trigonometric functions sn(t) and cn(t) is complete and orthonormalized in the interval
0 ≤ t ≤ 2.15

Relations (3.1) and expression (2.9) specify the L-problem of moments,5,13,14 the solution of which defines the
required optimal control and motion of system (1.7). The solvability of the problm, the uniqueness of the solution and
its explicit construction require the development of special approaches,5,7–9 which is non-trivial. They are based on
the possibility of representing quadratures (3.1) in the interval of periodicity 0 ≤ t ≤ 2. In fact, we will represent the
quantity T = 2N + � uniquely, where N = 0, 1, 2, . . ., while � is the ‘remainder’, 0 ≤ � < 2; we then have5,7–9

(3.2)

The right-hand sides of the Eqs. (3.1), taking into account relations (3.2), comprise the Fourier coefficients of the
unknown function A(t) in the interval 0 ≤ t ≤ 2. The required solution uniquely follows from relations (3.2) and (3.1),
with N ≥ 1, in the indicated time interval:

(3.3)

If N = 0, we assume that A(t) ≡ 0 for � < t ≤ 2; this condition imposes additional requirements on the properties of
the functions f(x) and g(x).

According to relations (2.9), (3.1) and (3.3), the optimal control a*(t) in the interval 2 < t ≤ 4 is continued in an odd
form, while for t > 4 it is continued periodically. The optimal motion (quenching of the oscillations) of system (1.7)
occurs according to expressions (2.5) after substituting a*(t) (3.3). However, the formulae obtained are extremely long
and difficult to analyse.

We will consider the formulation of the problem for T = 2N, simplified with respect to the parameter T, which enables
an N-fold change of the control action to be achieved as a result of the passage of a wave disturbance. In particular,
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in the shortest interval T = 2 (N = 1), sufficient for the unique solution of the L-problem of moments and the optimal
control problem, from relations (3.1), (3.2) and (2.9) we obtain a denumerable set of conditions imposed on a*(t),

(3.4)

Thus, the Fourier coefficients (3.4) of the required function a*(t) in terms of the orthonormalized system sn(t), cn(t),
0 ≤ t ≤ 2, enable easily verifiable expressions to be obtained in the form of series

(3.5)

The first series in the last link of the chain of equalities (3.5) will be represented in terms of the initial function f(x),
0 ≤ x ≤ 1 (see formulae (2.5)). In fact, for 0 ≤ t ≤ 1, this property is obvious, while, for 1 < t ≤ 2, the function f(t) is
continued symmetrically: the sum of the series is equal to f(2 − t). As a result we have the explicit expression

(3.6)

The second series can be transformed in the following way

(3.7)

From the properties of the functions sn(t) it follows that the functions F(t) and G(t) are continuously differentiable
at the “point of joining” t = 1 if f′(1) = 0 and g′(1) = 0. In this case, at other points of the interval 0 ≤ x < 1, the functions
f(x) and g(x) are also considerd to be smooth. Thus, according to Eqs. (3.5)–(3.7), an explicit representation (in terms
of the initial functions f(x), g(x), 0 ≤ x ≤ 1) of the optimal control a*(t) in the interval 0 ≤ t ≤ T = 2 is obtained:

(3.8)

Substitution of the optimal control a*(t) (3.8) into the formula for v(t, x) (2.5) leads to an expression for the solution
that contains eight terms. They are defined in terms of the functions F and G and the control components corresponding
to them. The terms describing the free motion and control can be paired up. This simplifies the verification of the property
v(T, x) = v̇(T, x) ≡ 0 at T = 2. If, for t ≥ T, we assume the control a(t) ≡ 0, then the elastic system (1.7), in the absence
of disturbances, will remain in a state of rest v(t, x) ≡ 0.

The solution constructed (weak, strong or classical) can be verified directly or by using a representation in the form
of Fourier series. The properties of smoothness should be ensured by selection of the functions f(x) and g(x), i.e. the
coefficients fn and gn should decrease rapidly as n → ∞. In particular, it will be satisfied if the series (2.5) (for the
interval T = 2) contain a finite number of terms. Then the expressions for the control a* (3.8) and the motion v (2.5)
will also contain only a finite number of terms.

Suppose, now, that T = 2N, where the integer N ≥ 2; then, from the expression (3.3) it follows that the required value
of the optimal control is defined in the form a∗

N (t) = N−1a ∗ (t), where the function a* is defined by expression (3.8),
and its continuation occurs according to the formulae (2.5) and (2.9). From this it follows that, if the number N is fairly
large, the optimal control |a∗

N | can be as small as desired for specified f(x) and g(x). As a result, the geometric-type
constraints normally imposed in applied research on the magnitude of the control action will be satisfied. Note that the
value of the functional J[a∗

N ] approaches zero, as N → ∞, as a quantity of the order N−1, i.e., the integral constraints
imposed on the control may also be satisfied by choosing the duration of the control process.
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We will calculate the minimum value of the functional using relations (1.5) and (3.5):

(3.9)

Thus, exact expressions for the optimal open-loop control and the optimal motion are constructed and represented
in an explicit form in terms of the initial distribution functions. In the same way as expression (3.9), the value of the
functional for the derivatives of T and the initial distributions f(x) and g(x) is calculated (taking into account the familiar
constraint for T < 2 and the requirements of smoothness on f and g).

We will discuss the possibility of synthesizing the optimal feedback control. If considerable disturbances, ignored
in the relations (1.1) and (1.2), are acting on the system, then, as they accumulate, the state of system (1.7) will change
and it will be necessary, at certain times t (in theory, continuously), to take into account the actual distribution

where v̂ and ˆ̇v are the measured state of the system, and also the time T − t remaining until the end of the control
process. This “synthesis” procedure can be implemented approximately, for example in discrete time intervals �t = 2.
At the final stage T − t < 2, the open-loop control a*(t) (3.3), or another method of minimizing the deviation from the
required state of rest, is used.
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